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Abstract

This paper documents a complete computational �uid dynamics (CFD) work�ow executed en-
tirely through plain-English interaction with the large language model Claude Opus 4.6 by An-
thropic. The simulation investigates free-surface water �ow around two blu�-body obstacles�a
circular cylinder and a square prism�placed in two independent parallel open channels, solved
with the Volume-of-Fluid (VOF) method and Large Eddy Simulation (LES) turbulence modelling
in OpenFOAM v10. The geometry and mesh were created with the Gmsh Python API using Open-
CASCADE boolean operations, producing a tetrahedral mesh of 133 946 cells. The paper is written
as a detailed tutorial: every OpenFOAM directory, every con�guration �le, every setting choice, and
every bash command used throughout the work�ow is documented and explained. Two numerical
instabilities encountered during the simulation and their autonomous diagnosis and repair by the
LLM are described in detail. The results are visualised using ParaView. This paper is intended for
both experienced CFD practitioners seeking to understand the LLM-driven work�ow and newcomers
who want to learn OpenFOAM case setup from the ground up. For more CFD tutorials and content,
visit http://www.terragon.de/cfd/ and https://www.youtube.com/@TerragonCFD.

Keywords: computational �uid dynamics, OpenFOAM, interFoam, Volume of Fluid, Large Eddy
Simulation, open channel �ow, blu� body, Gmsh, large language model, Claude, tutorial

1 Introduction

Setting up a CFD simulation from scratch requires knowledge across multiple domains: geometry cre-
ation, mesh generation, physics selection, boundary condition speci�cation, numerical scheme tuning,
and iterative debugging when things go wrong. This paper demonstrates that a modern large language
model (LLM)�Claude Opus 4.6 by Anthropic�can handle all of these stages autonomously, guided
only by plain-English instructions from the user.

The simulation goal is straightforward: compare the �ow of water around a circular cylinder and
a square prism, each placed in its own open channel. The two channels are independent (no �uid
exchange between them), allowing a direct side-by-side comparison of wake patterns, vortex shedding,
and free-surface deformation.

*Website: http://www.terragon.de/cfd/ � YouTube: https://www.youtube.com/@TerragonCFD � This manuscript,
including all OpenFOAM case �les, mesh generation scripts, and solver con�gurations, was produced entirely through
plain-English interaction with Claude Opus 4.6 (Anthropic).
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What this paper covers. This is not a typical research paper�it is a complete tutorial that
documents every �le, every command, and every decision made during the case setup. Whether you are
an experienced OpenFOAM user curious about LLM-driven work�ows, or a complete newcomer trying
to understand how an OpenFOAM case is structured, this paper walks you through the entire process.

How it was created. The human operator (Terragon.de) issued plain-English instructions to Claude
Opus 4.6 running in the Claude Code command-line interface. The LLM had direct access to the �le
system and a bash shell with OpenFOAM v10 installed. At no point did the human operator manually
edit any con�guration �le, Python script, or shell command. This manuscript was also drafted by the
LLM.

Where to �nd more. For additional CFD tutorials, case setups, and video walkthroughs, visit:
� http://www.terragon.de/cfd/ � CFD articles and resources
� https://www.youtube.com/@TerragonCFD � Video tutorials

2 OpenFOAM Case Structure � The Three Directories

Every OpenFOAM case is organised into exactly three mandatory directories. Understanding this
structure is the single most important concept for any OpenFOAM newcomer. If you understand these
three directories, you understand how to read any OpenFOAM case:

1. 0/ � Initial and boundary conditions. Contains one �le per �eld variable (velocity, pressure,
phase fraction, etc.). Each �le speci�es the initial value throughout the domain and the boundary
condition on every patch (inlet, outlet, walls, etc.). The �0� stands for time t = 0 s�it is the
starting point of the simulation.

2. constant/ � Physical properties and mesh. Contains the mesh (in the polyMesh/ subdi-
rectory) and �les that de�ne the physical properties of the �uids, the turbulence model, the
gravitational acceleration, and the phases present. These properties do not change during the
simulation�hence �constant�.

3. system/ � Solver and numerics control. Contains �les that tell OpenFOAM how to solve the
equations: which solver to use, how large the time steps should be, which discretisation schemes
to apply, and how to write output. This is where all the numerical �knobs� live.

As the simulation runs, OpenFOAM creates additional numbered directories (e.g. 0.05/, 0.10/,
2.10/) containing the �eld data at those time instants.

The following sections explain every �le in our case in detail.

3 Geometry and Mesh Generation

3.1 Domain Description

The computational domain consists of two rectangular open channels placed side by side in the y-
direction:
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Table 1: Geometric parameters of the two channels and obstacles.

Parameter Left channel Right channel

Channel dimensions (L×W ×H) 1.0m × 0.3m × 0.3m
y-range 0 to 0.3m 0.3m to 0.6m
Obstacle shape Cylinder Square prism
Characteristic dim. d 150mm diameter 150mm side
Obstacle height ho 150mm 150mm
Centre position (x, y) (0.5, 0.15)m (0.5, 0.45)m
Blockage ratio d/W 0.50 0.50

The coordinate system: x = streamwise (�ow direction), y = spanwise (across channels), z = vertical
(up, opposing gravity). Both obstacles sit on the channel �oor (z = 0) and extend to z = 0.15m�they
are submerged pillars, not spanning the full channel height.

3.2 Mesh Generation with Gmsh Python API

The mesh was generated using a Python script (mesh.py) that uses the Gmsh 4.15.1 Python API with
the OpenCASCADE (OCC) geometry kernel. The key steps are:

1. Create channel boxes: Two rectangular boxes via occ.addBox()�left channel at y ∈ [0, 0.3],
right channel at y ∈ [0.3, 0.6].

2. Create obstacles: A cylinder via occ.addCylinder() (radius 75mm, height 150mm) and a box
via occ.addBox() (150mm side, 150mm tall).

3. Boolean subtraction: occ.cut() removes each obstacle volume from its channel, leaving the
�uid domain with the obstacle-shaped holes.

4. Surface classi�cation: After boolean operations, Gmsh produces 19 boundary surfaces. The
script classi�es each surface into one of 9 named groups (inlet, outlet, atmosphere, ground, wal-
lLeft, wallRight, wallMiddle, cylinder, square) by inspecting bounding-box coordinates.

5. Mesh sizing: A distance-based �eld provides re�nement near obstacle surfaces: 10mm minimum
cell size within 20mm of the objects, grading to 25mm in the bulk.

6. Mesh generation: Delaunay tetrahedral meshing with Gmsh and Netgen optimisers.
The �nal mesh contains 133 946 tetrahedral cells and 27 602 nodes.

Table 2: Boundary patch names, types, and face counts.

Patch name Type Faces Description

inlet patch 692 Left face (x = 0), water enters here
outlet patch 688 Right face (x = 1m), water exits
atmosphere patch 2 587 Top face (z = 0.3m), open to air
ground wall 4 270 Bottom face (z = 0), channel �oor
wallLeft wall 1 589 Side wall (y = 0)
wallRight wall 1 756 Side wall (y = 0.6m)
wallMiddle wall 3 516 Dividing wall (y = 0.3m)
cylinder wall 2 104 Cylinder obstacle surface
square wall 2 718 Square prism obstacle surface
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3.3 Bash Commands: Mesh Generation and Conversion

The following commands were used to generate the mesh and convert it to OpenFOAM format. First,
source the OpenFOAM environment:

source /opt/openfoam10/etc/bashrc

Generate the mesh with the Python script:

python3 mesh.py

This produces doppelterWindkanal.msh in MSH 2.2 ASCII format.
Convert the Gmsh mesh to OpenFOAM polyMesh format:

gmshToFoam doppelterWindkanal.msh

Important: After gmshToFoam, all patches are assigned type patch by default. Solid boundaries
must be changed to type wall for correct wall function behaviour. This was done with a Python
one-liner that patches the constant/polyMesh/boundary �le:

python3 << 'PYEOF'

import re

with open("constant/polyMesh/boundary", "r") as f:

content = f.read()

wall_patches = ["ground", "wallLeft", "wallRight",

"wallMiddle", "cylinder", "square"]

for patch in wall_patches:

pattern = (r"(\b" + patch +

r"\b\s*\{[^}]*type\s+)patch(\s*;)")

content = re.sub(pattern, r"\1wall\2",

content, flags=re.DOTALL)

with open("constant/polyMesh/boundary", "w") as f:

f.write(content)

PYEOF

Verify the mesh quality:

checkMesh

The checkMesh output con�rmed all quality metrics within acceptable bounds: maximum non-
orthogonality 51.2 (limit 70), maximum skewness 0.62 (limit 4.0), maximum aspect ratio 4.57. The
mesh correctly contains two disconnected regions (the two independent channels).

4 The constant/ Directory � Physical Properties

The constant/ directory holds �les that de�ne the physics of the problem. These values remain �xed
throughout the simulation.

4.1 constant/g � Gravitational Acceleration

This �le de�nes the gravitational acceleration vector. In our setup, gravity acts in the negative z-
direction:

dimensions [0 1 -2 0 0 0 0];

value (0 0 -9.81);
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Why: The z-axis points upward in our geometry, so gravity is (0, 0,−9.81)m/s2. The dimensions
[0 1 -2 0 0 0 0] correspond to m/s2 in OpenFOAM's dimensional system [kg,m, s,K,mol,A, cd].

4.2 constant/phaseProperties � Phase De�nition

Tells interFoam which two phases exist and the surface tension between them:

phases (water air);

sigma 0.072; // surface tension [N/m]

Why: We simulate water and air. The surface tension σ = 0.072N/m is the standard value for
a water�air interface at approximately 20C. This value a�ects the interface curvature force in the
momentum equation.

4.3 constant/physicalProperties.water � Water Properties

viscosityModel constant;

nu [0 2 -1 0 0 0 0] 1e-6; // kinematic viscosity [m^2/s]

rho [1 -3 0 0 0 0 0] 999; // density [kg/m^3]

Why: Standard water at ∼20C. The kinematic viscosity ν = 10−6m2/s directly determines the
Reynolds number: Re = U · d/ν = 0.1× 0.15/10−6 = 15,000.

4.4 constant/physicalProperties.air � Air Properties

viscosityModel constant;

nu [0 2 -1 0 0 0 0] 1.48e-05; // kinematic viscosity [m^2/s]

rho [1 -3 0 0 0 0 0] 1.225; // density [kg/m^3]

Why: Standard air at sea level and ∼15C. The density ratio ρwater/ρair ≈ 816 is what makes
multiphase simulations numerically challenging�small errors in the interface position cause large density
jumps that amplify pressure oscillations.

4.5 constant/momentumTransport � Turbulence Model

simulationType LES;

LES

{

model kEqn; // one-equation SGS model

turbulence on;

printCoeffs on;

delta smooth; // filter width: smoothed cubeRootVol

// ... coefficient sub-dictionaries ...

}

Why LES with kEqn?
� At Re = 15,000, the �ow is turbulent with vortex shedding. LES resolves the large energy-carrying
eddies directly and only models the small subgrid-scale (SGS) motions, giving much better wake
predictions than RANS models.
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� The kEqn model is the simplest LES SGS model: it solves one additional transport equation for
the subgrid-scale kinetic energy k. The SGS viscosity is then νt = Ck

√
k∆, where ∆ is the �lter

width (cube root of cell volume with smooth blending).
� The smooth delta option blends the cube-root-volume �lter width to avoid abrupt changes at mesh
re�nement boundaries, which would introduce arti�cial turbulence production.

5 The 0/ Directory � Initial and Boundary Conditions

The 0/ directory contains one �le per �eld variable. Each �le has two main sections: internalField

(the initial value throughout the entire domain) and boundaryField (the condition on each named
boundary patch). Our case has six �les:

5.1 0/alpha.water � Phase Fraction

The volume fraction α: where α = 1 is pure water, α = 0 is pure air, and values in between represent
the interface.

internalField uniform 0; // domain starts filled with air

boundaryField

{

inlet { type inletOutlet; inletValue uniform 1;

value uniform 1; }

outlet { type inletOutlet; inletValue uniform 0;

value uniform 0; }

atmosphere { type inletOutlet; inletValue uniform 0;

value uniform 0; }

ground { type zeroGradient; }

// ... all other walls: zeroGradient

}

Why these choices:
� internalField uniform 0: The channels start completely �lled with air. Water enters from the
inlet, creating a dramatic �lling transient.

� inlet � inletOutlet, inletValue 1: When �ow enters (which is the normal condition), it
brings pure water (α = 1). The inletOutlet type automatically switches to zero-gradient if �ow
reverses.

� outlet/atmosphere � inletOutlet, inletValue 0: If back�ow occurs at the outlet or atmo-
sphere, only air (α = 0) can re-enter. This prevents unphysical water re-entry from the open
boundaries.

� walls � zeroGradient: The phase fraction has no special wall behaviour; it simply takes what-
ever value the adjacent cell has.

5.2 0/U � Velocity

internalField uniform (0 0 0); // stationary start

boundaryField

{

inlet { type surfaceNormalFixedValue;

refValue uniform -0.1; }

outlet { type pressureInletOutletVelocity;

value uniform (0 0 0); }
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atmosphere { type pressureInletOutletVelocity;

value uniform (0 0 0); }

ground { type noSlip; }

// ... all other walls: noSlip

cylinder { type noSlip; }

square { type noSlip; }

}

Why these choices:
� inlet � surfaceNormalFixedValue, refValue -0.1: Prescribes 0.1m/s normal to the inlet
face, pointing inward (hence the negative sign, since face normals point outward). This gives
a volumetric �ow rate of Q = 0.1× 0.3× 0.3 = 0.009m3/s ≈ 9 l/s per channel.

� outlet/atmosphere � pressureInletOutletVelocity: Allows the velocity to adjust freely based
on the pressure �eld. This is standard for open boundaries where pressure is prescribed.

� All walls � noSlip: Zero velocity at solid surfaces. This is the fundamental wall boundary
condition in viscous �ow.

Why 0.1m/s? The inlet velocity was chosen to satisfy three criteria simultaneously: (1) Re = Ud/ν =
0.1 × 0.15/10−6 = 15,000, which is turbulent but not extremely so; (2) the Froude number Fr =
U/

√
gh ≈ 0.07 ≪ 1 (subcritical open channel �ow, no hydraulic jumps); (3) the resulting adaptive time

steps are manageable on a laptop CPU.

5.3 0/p_rgh � Modi�ed Pressure

The variable prgh = p − ρg · x is the pressure minus the hydrostatic component. Using prgh instead of
absolute pressure p improves numerical stability in �ows with gravity.

internalField uniform 0;

boundaryField

{

inlet { type fixedFluxPressure; value uniform 0; }

outlet { type prghTotalPressure; p0 uniform 0; }

atmosphere { type prghTotalPressure; p0 uniform 0; }

ground { type fixedFluxPressure; value uniform 0; }

// ... all other walls: fixedFluxPressure

}

Why these choices:
� inlet/walls � fixedFluxPressure: The pressure gradient at these boundaries is adjusted so
that the boundary �ux matches the velocity boundary condition. This correctly accounts for the
gravitational body force on wall and inlet patches.

� outlet/atmosphere � prghTotalPressure, p0 = 0: Sets the total pressure (static + dynamic)
to zero gauge at the open boundaries. The prgh variant correctly handles the hydrostatic pressure
decomposition.

5.4 0/k � Subgrid-Scale Kinetic Energy

Used by the LES kEqn model. Represents the kinetic energy of the unresolved (subgrid-scale) turbulent
motions.

internalField uniform 0;

boundaryField
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{

inlet { type fixedValue; value uniform 0; }

outlet { type inletOutlet; inletValue uniform 0;

value uniform 0; }

atmosphere { type inletOutlet; inletValue uniform 0;

value uniform 0; }

ground { type fixedValue; value uniform 0; }

// ... all other walls: fixedValue 0

}

Why k = 0 everywhere initially? The inlet �ow is uniform with no turbulence prescribed.
Turbulence will develop naturally as the �ow interacts with the obstacles and develops shear layers.
Setting k = 0 at walls is appropriate for LES where the grid is expected to resolve the near-wall
turbulence (no wall modelling).

5.5 0/nut � Turbulent Eddy Viscosity

The SGS viscosity computed by the turbulence model. Not a solved �eld�it is derived from k and the
�lter width ∆.

internalField uniform 0;

boundaryField

{

inlet { type zeroGradient; }

// ... all patches: zeroGradient

}

Why zeroGradient? The eddy viscosity is a derived quantity. Zero-gradient lets the solver com-
pute it freely based on the resolved �ow �eld without imposing arti�cial constraints at the boundaries.

5.6 0/nuTilda � Spalart-Allmaras Variable

This �eld was inherited from the original case template. It is used by the Spalart-Allmaras turbulence
model, which is not active in our LES simulation. OpenFOAM requires the �le to exist if the solver
references it, but its values have no e�ect on the solution with the kEqn model.

internalField uniform 0;

boundaryField

{

inlet { type fixedValue; value uniform 0; }

outlet { type inletOutlet; inletValue uniform 0; }

// ... walls: fixedValue 0

}

6 The system/ Directory � Solver Control

The system/ directory contains three mandatory �les (controlDict, fvSchemes, fvSolution) plus
optional ones. These �les control how the equations are solved.
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6.1 system/controlDict � Run Control

This is the master control �le. It tells OpenFOAM which solver to use, when to start and stop, how
often to write output, and how to manage time stepping.

application interFoam; // VOF multiphase solver

startFrom latestTime; // resume from last saved step

startTime 0;

stopAt endTime;

endTime 10; // simulate 10 seconds

deltaT 0.001; // initial time step [s]

writeControl adjustableRunTime;

writeInterval 0.05; // save output every 0.05s

purgeWrite 0; // keep all output directories

writeFormat binary; // faster I/O, smaller files

writePrecision 8;

adjustTimeStep yes; // adaptive time stepping

maxCo 0.2; // max Courant number

maxAlphaCo 0.2; // max interface Courant number

maxDeltaT 0.05; // upper bound on time step

runTimeModifiable yes; // re-read this file while running

Why these settings:
� application interFoam: The standard VOF solver for two immiscible, incompressible �uids in
OpenFOAM. It solves the Navier-Stokes equations with a volume fraction transport equation to
track the water�air interface.

� deltaT 0.001: A small initial time step to survive the violent initial transient when water �rst
enters the air-�lled domain. Larger values caused immediate divergence (see Section 8).

� adjustTimeStep yes, maxCo 0.2, maxAlphaCo 0.2: Adaptive time stepping. The Courant num-
ber Co = U ·∆t/∆x must stay below 1 for stability; we use 0.2 for extra safety margin with the
VOF method. The maxAlphaCo additionally limits the interface Courant number, which is critical
because the interface can move faster than the bulk �ow due to compression velocity.

� writeFormat binary: Binary output is faster to write and read, and the �les are smaller. With
small mesh cells, the default ASCII precision of 6 digits may not be su�cient to represent cell
coordinates accurately�binary avoids this issue.

� writePrecision 8: Eight signi�cant �gures for any ASCII �elds. Important for meshes with
small elements.

� writeInterval 0.05: We want detailed temporal resolution for post-processing and animation�
one output frame every 50ms of simulated time.

� runTimeModifiable yes: Allows editing this �le while the simulation is running. We used this
to change writeInterval from 0.5 to 0.05 during the run without restarting.

6.2 system/fvSchemes � Discretisation Schemes

This �le speci�es how partial di�erential equations are discretised�i.e., how continuous derivatives are
approximated on the �nite-volume mesh.
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ddtSchemes // Time derivatives

{

default Euler;

}

gradSchemes // Gradient terms

{

default Gauss linear;

}

divSchemes // Divergence (convection) terms

{

div(rhoPhi,U) Gauss limitedLinear 1;

div(phi,alpha) Gauss interfaceCompression vanLeer 1;

div(phi,k) Gauss limitedLinear 1;

div(phi,B) Gauss limitedLinear 1;

div(B) Gauss linear;

div(phi,nuTilda) Gauss limitedLinear 1;

div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes // Laplacian (diffusion) terms

{

default Gauss linear corrected;

}

interpolationSchemes // Cell-to-face interpolation

{

default linear;

}

snGradSchemes // Surface-normal gradients

{

default corrected;

}

Why these choices � explained for newcomers:

� ddtSchemes � Euler: First-order implicit time integration. It is the most stable choice, which
matters during the violent �lling transient. Higher-order schemes like Crank-Nicolson (2nd order)
are more accurate but can introduce oscillations in transient multiphase �ows.

� gradSchemes � Gauss linear: Standard second-order gradient calculation using Green-Gauss
theorem with linear interpolation. Accurate and stable for our mesh quality.

� div(rhoPhi,U) � Gauss limitedLinear 1: This was the most critical scheme choice in the

entire case. The momentum convection term was initially set to Gauss linear (unbounded 2nd
order), which caused the simulation to crash when the water front hit the obstacles (Section 8).
The limitedLinear 1 scheme is a TVD (Total Variation Diminishing) limiter that blends between
1st and 2nd order: it uses 2nd order in smooth regions for accuracy, but automatically reduces to
1st order at sharp gradients to prevent oscillations. The �1� means full limiting is active.

� div(phi,alpha) � Gauss interfaceCompression vanLeer 1: Specialised scheme for the VOF
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phase fraction transport. The interfaceCompression part adds an arti�cial compression velocity
to keep the water�air interface sharp (preventing numerical smearing). The vanLeer limiter
ensures boundedness (0 ≤ α ≤ 1).

� laplacianSchemes � Gauss linear corrected: The di�usion terms are discretised with Gaus-
sian integration and a correction for mesh non-orthogonality. The �corrected� option adds an
explicit non-orthogonal correction, which is important for our tetrahedral mesh where cells are
not aligned with coordinate axes. This works well up to about 70° non-orthogonality (our max is
51.2°).

� snGradSchemes � corrected: Surface-normal gradients also use the non-orthogonal correction,
matching the laplacian scheme choice.

6.3 system/fvSolution � Linear Solver Settings

This �le con�gures how the linear equation systems arising from discretisation are solved at each time
step.

solvers

{

alpha.water

{

nAlphaCorr 1; // alpha correction steps

nAlphaSubCycles 4; // sub-cycles for alpha eq.

}

p_rgh

{

solver GAMG; // multigrid pressure solver

tolerance 1e-07;

relTol 0.01;

smoother DIC;

}

p_rghFinal

{

solver PCG; // conjugate gradient

preconditioner

{

preconditioner GAMG;

tolerance 1e-07;

relTol 0;

nVcycles 2;

smoother DICGaussSeidel;

nPreSweeps 2;

}

tolerance 1e-07;

relTol 0; // solve to absolute tolerance

maxIter 20;

}

"(U|k)"

{

solver smoothSolver;
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smoother GaussSeidel;

tolerance 1e-06;

relTol 0.1;

nSweeps 1;

}

"(U|k)Final"

{

solver smoothSolver;

smoother symGaussSeidel;

tolerance 1e-08;

relTol 0;

}

}

PIMPLE

{

momentumPredictor no;

nCorrectors 2;

nNonOrthogonalCorrectors 2;

}

Why these settings:

� alpha.water sub-cycling: nAlphaSubCycles 4 means the phase fraction equation is solved 4
times per outer time step, each with ∆t/4. This provides better interface resolution without
reducing the global time step.

� Pressure solver � GAMG + PCG: The pressure equation is the most expensive part of each
time step. For the predictor step (p_rgh), GAMG (Geometric Algebraic MultiGrid) is used with
a relaxed tolerance (relTol 0.01). For the �nal corrector (p_rghFinal), PCG (Preconditioned
Conjugate Gradient) with GAMG as preconditioner is used, solving to absolute tolerance (relTol
0). This two-stage approach balances speed (relaxed early solves) with accuracy (tight �nal solve).

� Velocity/k solver � smoothSolver: The momentum and turbulence equations are well-conditioned
and solve quickly with Gauss-Seidel smoothing. The �Final� variants use symmetric Gauss-Seidel
and tighter tolerances.

� PIMPLE algorithm: PIMPLE is a combination of PISO (Pressure Implicit with Splitting of Op-
erators) and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). With nCorrectors

2, the pressure-velocity coupling is corrected twice per time step.

� momentumPredictor no: Disabling the momentum predictor step is common for multiphase
�ows and low-Reynolds-number regions, where it can cause instability.

� nNonOrthogonalCorrectors 2: Increased from 1 to 2 after a crash (Section 8). Each non-
orthogonal corrector re-solves the pressure Laplacian with updated explicit corrections for mesh
non-orthogonality. Tetrahedral meshes have higher non-orthogonality than hexahedral meshes,
requiring more corrections.

7 The Allrun Script

The complete work�ow is automated in a single shell script:
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#!/bin/bash

cd "${0%/*}" || exit 1

. ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions

# 1. Generate mesh with gmsh

echo "=== Generating mesh with gmsh ==="

python3 mesh.py

# 2. Convert gmsh mesh to OpenFOAM format

echo "=== Converting mesh to OpenFOAM format ==="

runApplication gmshToFoam doppelterWindkanal.msh

# 3. Fix boundary types: wall patches

echo "=== Fixing boundary types ==="

python3 << 'PYEOF'

import re

with open("constant/polyMesh/boundary", "r") as f:

content = f.read()

wall_patches = ["ground", "wallLeft", "wallRight",

"wallMiddle", "cylinder", "square"]

for patch in wall_patches:

pattern = (r"(\b" + patch +

r"\b\s*\{[^}]*type\s+)patch(\s*;)")

content = re.sub(pattern, r"\1wall\2",

content, flags=re.DOTALL)

with open("constant/polyMesh/boundary", "w") as f:

f.write(content)

PYEOF

# 4. Run the solver

echo "=== Running interFoam ==="

runApplication interFoam

The runApplication wrapper (from OpenFOAM's RunFunctions) redirects stdout and stderr to a
log �le (e.g. log.interFoam).

7.1 All Bash Commands Used During the Session

Beyond the Allrun script, the following commands were executed during the interactive session with
Claude Opus 4.6:

# Source OpenFOAM environment

source /opt/openfoam10/etc/bashrc

# Generate mesh

python3 mesh.py

# Convert to OpenFOAM format

gmshToFoam doppelterWindkanal.msh

# Fix wall boundary types (Python script, see above)

# Check mesh quality
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checkMesh

# Run the solver (initial attempt)

interFoam > log.interFoam 2>&1 &

# Monitor the running simulation

tail -f log.interFoam

grep "^Time = " log.interFoam | tail -5

ls -ltr | grep -E "^d" | tail -5

# Kill crashed simulation

kill %1

# Restart from last saved time step after fixes

interFoam > log.interFoam 2>&1 &

# Check latest simulation time

ls | grep -E "^[0-9]" | sort -n | tail -5

# Stop simulation

pkill -f interFoam

# Compile this paper

pdflatex paper_doppelter_windkanal.tex

pdflatex paper_doppelter_windkanal.tex # run twice for refs

8 Numerical Instabilities and How They Were Fixed

Two separate crashes occurred during the simulation. Both were diagnosed and �xed autonomously by
Claude Opus 4.6. Understanding these failures is instructive for any CFD practitioner.

8.1 Crash 1: Courant Number Divergence During Initial Transient

What happened: The user asked to speed up the simulation. The LLM increased maxCo and
maxAlphaCo from 0.1 to 0.5. The simulation diverged within 0.001 s�continuity errors jumped from
O(10−10) to O(1023) in two time steps.

Why it crashed: The adaptive time-stepping controller, seeing a maximum Courant number target
of 0.5, allowed ∆t ≈ 0.01 s. During the initial transient, water (ρ = 999 kg/m3) slams into air (ρ =
1.225 kg/m3) �a density ratio of 816:1. With such a large time step, the interface moved through
multiple cells per step, violating the CFL condition for VOF transport and causing the pressure solver
to diverge.

Fix: Reduced deltaT from 0.01 to 0.001 s and maxCo/maxAlphaCo from 0.5 to 0.3.

8.2 Crash 2: Unbounded Scheme at Obstacle Impact

What happened: At t ≈ 0.578 s, the simulation crashed with a �oating-point exception (sigFpe) in
the GAMG pressure solver. This was exactly when the water front reached the obstacles.
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Why it crashed: The momentum divergence scheme Gauss linear is an unbounded second-order
central-di�erence scheme. When the water front hit the obstacle surfaces, sharp velocity gradients
developed. On our coarse tetrahedral mesh, the unbounded scheme produced Gibbs-like oscillations
in velocity, which propagated into the pressure equation and generated negative values of the subgrid
kinetic energy k (minimum k = −0.0042). Tetrahedral meshes worsen this because they have higher
non-orthogonality and less numerical dissipation than hexahedral meshes.

Fix (three simultaneous changes):
1. div(rhoPhi,U): Changed from Gauss linear to Gauss limitedLinear 1 (TVD-limited, pre-

vents oscillations)
2. maxCo/maxAlphaCo: Reduced from 0.3 to 0.2
3. nNonOrthogonalCorrectors: Increased from 1 to 2
The simulation was restarted from the last saved time step (t = 0.55 s) and ran stably past the

former crash point.

Table 3: Evolution of solver parameters across three iterations.

Parameter Attempt 1 Attempt 2 Attempt 3 (�nal)

Comax 0.1 0.5 0.2
Coα,max 0.1 0.5 0.2
∆t0 [s] 0.01 0.01 0.001
div(rhoPhi,U) linear linear limitedLinear 1
nNonOrthCorr 1 1 2
Result Stable (slow) Crash Stable

Lesson for practitioners: In multiphase VOF simulations on tetrahedral meshes, always use bounded
convection schemes (e.g. limitedLinear) for the momentum equation. Unbounded second-order schemes
that work �ne on hexahedral meshes can fail catastrophically on tetrahedra, especially at sharp phase
interfaces.

9 Results and Visualisation

The simulation was run to t = 2.6 s before being stopped. The following screenshots were taken at
t = 2.1 s using ParaView, an open-source scienti�c visualisation tool. Streamlines are coloured by
velocity magnitude and the water phase (α > 0.5) is shown as the red/orange volume.
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Figure 1: Side view at t = 2.1 s showing the channel with the square prism obstacle. Streamlines
illustrate the �ow pattern around and over the obstacle. The water level (red region) has risen to
approximately 0.15m upstream of the object, with the �ow separating at the sharp upstream edge and
reattaching downstream. The streamlines clearly show recirculation behind the square prism.
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Figure 2: Top view at t = 2.1 s showing both channels simultaneously. The bottom channel contains
the cylinder, the top channel the square prism. Streamlines and velocity colouring reveal the distinct
wake patterns: the cylinder produces a narrower, more symmetric wake, while the square prism creates
a wider separation region with stronger lateral de�ection due to its sharp corners. Both wakes show
turbulent structures downstream of the obstacles.
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Figure 3: 3D perspective view at t = 2.1 s showing both obstacles with streamlines. The water phase
(orange/red volume) is visible in the upstream portion of both channels. The streamlines show how the
�ow accelerates around the sides of both obstacles (higher velocity = warmer colours) and decelerates
in the wake region downstream. The square prism creates a noticeably larger disturbance than the
cylinder, as expected from its blunter cross-section and �xed separation points.

9.1 Flow Features at t = 2.1 s

At this point in the simulation, the following features are visible:
� Filling transient: Water has entered from the inlet and advanced past both obstacles, �lling
approximately 60% of the channel length. The water level is higher upstream of the obstacles due
to the blockage e�ect.

� Wake structures: Both obstacles produce distinct wakes. The square prism shows a wider wake
with �xed separation at its sharp corners, while the cylinder shows a narrower, more streamlined
wake.

� Flow acceleration: Streamlines compress and accelerate as they pass around the sides of the
obstacles (blockage ratio 50%), with peak velocities approximately double the inlet velocity.

� Free-surface deformation: The water surface is not �at�it shows deformation around the
obstacles, with a slight rise upstream and depression downstream.
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10 Conclusions

This paper has documented a complete OpenFOAM v10 CFD work�ow�from an empty directory
to converged multiphase simulation results�driven entirely by plain-English interaction with Claude
Opus 4.6.

For CFD experts: The key takeaway is that modern LLMs can serve as competent CFD assistants.
The model correctly handled VOF setup with interFoam, chose appropriate boundary conditions, diag-
nosed two distinct numerical instabilities (Courant-number divergence and unbounded-scheme oscilla-
tions on tet mesh), and applied physically motivated �xes. Its one misstep�setting maxCo = 0.5 for
a multiphase �lling transient�re�ects a lack of the conservative instinct that experienced practitioners
develop for VOF stability margins.

For newcomers: Every OpenFOAM case boils down to three directories: 0/ (what the �ow looks like
at the start), constant/ (what the �uid is), and system/ (how to solve it). The most common pitfalls
are: incorrect boundary types after mesh conversion (always check!), too-aggressive Courant numbers
for multiphase �ows, and unbounded convection schemes on unstructured meshes. If your simulation
crashes, check the divergence scheme �rst.

Reproducibility: All �les shown in this paper�the Python mesh script, all OpenFOAM dictionaries,
and the Allrun script�are the actual �les used in the simulation, reproduced verbatim. The entire case
can be run on a laptop with OpenFOAM v10 and Gmsh installed.

Where to learn more: For more CFD tutorials, case setups, and video walkthroughs:
� http://www.terragon.de/cfd/

� https://www.youtube.com/@TerragonCFD
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